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Abstract
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1 Introduction

Corporate bankruptcy is an active area of financial research because an event of this nature
will always provoke adverse effects on the economy and pose a credibility challenge to financial
authorities. In fact, the forecast of bankruptcies is a subject of paramount importance for
different types of governmental and commercial organisations because a failed corporation can
cause contagious failures to the rest of the financial system and thus lead to a systemic crisis.
Such importance has been further increased by regulations such as the the Basel Committee
on Banking Supervision (2004) or Basel II, which suggests financial institutions to build their
credit portfolios based on the default assessment of their clients. As a consequence, the
development of analytical tools to determine which financial information is more relevant to
predict financial distress has gained popularity along with the design of early warning systems
that predict bankruptcy.

Along the years two main methodologies have been developed to assist in the process of
estimating financial distress (i.e. predicting bankruptcies): the first one uses accounting infor-
mation while the second one, market information. Among the former, financial ratio analysis
is a technique that studies relations of the type X/Y where X,Y ∈ R are variables selected
from an enterprise’s financial statement. Although there is no consensus for defining or cal-
culating financial ratios we can still divide them into four categories: efficiency, profitability,
short term and long term solvency ratios. The seminal work on prediction of corporate failure
through financial ratio analysis was proposed by Beaver (1966) and it can be thought of as a
univariate classification technique to estimate the probability of failure. Subsequently Altman
(1968) worked on a generalisation through the estimation of a multivariate statistic known
as Z-score.

While these two methods have proved useful for the last forty years, the advent of new
regulations such as Basel II justifies the use of more sophisticated techniques to predict fi-
nancial distress. Among such novel methodologies a group with an important computational
component has been recently developed. For example the problems of asset valuation, port-
folio allocation and bankruptcy prediction have been approached from different perspectives,
like genetic algorithms (GA’s), artificial neural networks (ANN’s), decision trees, among oth-
ers. We will use the term computational finance (Tsang and Martinez-Jaramillo, 2004, Chen,
2002) to refer to the development and application of these type of techniques to solve financial
problems and some literature on the topic can be found at (Serrano-Cinca et al., 1993, Back
et al., 1996, Joos et al., 1998, Varetto, 1998, Atiya, 2001, Shin and Lee, 2002, Park and Han,
2002, Yip, 2003, Quintana et al., 2007).

To the best of our knowledge, this is the first work to apply the Gaussian process formalism
for data inference (O’Hagan, 1978) to estimate bankruptcy probabilities. From a Bayesian
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perspective, GP’s provide a natural way for learning a regression or classification function in
terms of functional priors and some very good monographs on the topic have been written
in recent years with (Rasmussen and Williams, 2006) as an example. Our work makes a
contribution to the field by presenting a comparison of classical statistical techniques for
classification against some recently developed machine learning algorithms. More specifically,
we introduce GP’s as a potentially powerful and competitive probabilistic framework for
bankruptcy prediction. As an added bonus of working within the realm of GP’s, we come up
with a feature that allows to determine the relevance of the different financial ratios in an
automatic way, something known as automatic relevance determination (ARD) in the neural
networks literature.

Although the methods presented here are applicable to any type of company that handles
financial ratios, data availability made us focus on the banking sector1. Analysing bankrupt-
cies in the banking sector implies taking into account that this type of institutions must satisfy
very specific legal and accounting requirements imposed to them by financial authorities, so
it is adequate to take them as a special case within the universe of corporate bankruptcy. In
fact generalising this task to different countries is made even more difficult when we consider
that some of their own regulations do not contemplate the existence of bankruptcies.

The rest of the paper is organized as follows: Section 2 introduces bankruptcy prediction
as a statistical classification problem. Sections 3 and 4 are devoted to the description of
some well-known statistical techniques used for bankruptcy prediction, namely discriminant
analysis and logistic regression. Section 5 describes the technical details of how a family of
stochastic processes, i.e. Gaussian ones, might be used to classify data and therefore applied
to our problem domain. Section 6 describes experiments carried out on a set of data from
the Federal deposit insurance corporation in order to assess how Gaussian processes fare
with respect to the other type of classifiers. Section 7 is a discussion about how GP’s could
be integrated into commercially available credit risk models. Finally Section 8 draws some
conclusions about the proposed methods and outlines future work.

2 Bankruptcy prediction as a classification problem

We are interested in forecasting the failure of banks and also on assigning a probability value
to quantify our degree of belief that this event will happen. In order to do so, we approach
the bankruptcy prediction problem as a binary classification one, where each instance of a
set of observed data belongs to a group of predefined classes (bankrupt or non-bankrupt)
and the objective is to try to separate one class from the other with the minimum amount of

1The work by Estrella et al. (2000) has a similar scope to ours.
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error. Thus we aim to have a system that predicts whether an institution will go bankrupt
or not according to some type of financial information, for example through the institution’s
financial ratios. This type of task is known as classification to the statistics community and
supervised learning to the machine learning one.

In the next two sections we review some of the most widespread methods for data classifi-
cation, among them Fisher’s discriminant analysis and logistic regression. Therefore, in order
to introduce the discussion, we will assume the following: (i) a classification task whereby
a new observation O? needs to be allocated to one of k available classes that are known a
priori ; (ii) that such classes are mutually exclusive; (iii) that for some reason the allocation
procedure depends on the application of an indirect method. By indirect we mean that a
vector of features x? is used instead of O?. We will assume the availability of correctly labeled
training data and consequently that an exact way to classify the observations exists, but that
for some reason is not feasible to apply. For example, medical diagnosis (identifying a dis-
ease) and prognosis (estimating the prospect of recovery) are typical examples where direct
classification is not feasible to apply, (MacLachlan, 1991).

Another suitable case for indirect classification is the determination of the level of financial
stress of a corporation because a straightforward assessment is impossible to produce; that is,
a company’s financial soundness simply cannot be ascertained from a direct checkup. Instead
it is more appropriate to resort to indirect means, like the corporation’s financial ratios to
determine whether it will go bankrupt or not.

A common approach to apply this strategy relies on the retrieval of the observed financial
ratios of a number N of companies along a window of time T ; where the financial ratio of
each bank is denoted by a vector xn,t; with subindex n ∈ {1, N} denoting the bank and
t ∈ {1, T}, the time when data was observed. Because bankruptcies are rare to repeat, the
data is usually considered time-invariant and therefore such dependency is dropped; in other
words the following assumption is made xn,t = xn, which basically consists of making data
i.i.d. A good deal of bankruptcy research has been done by taking this approach and some
examples are (Altman, 1968, 2002). It should be noted that by eliminating the subindex t,
the data is effectively considered a still photograph and in fact, this is the approach taken
in this work due to data constraints. Alternative approaches to deal with estimation of the
financial stress of a corporation but that integrate the temporal dimension of data are e.g
(McDonald and van de Gucht, 1999) or (Duffie et al., 2007).
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3 Fisher’s Discriminant analysis

Discriminant analysis is a popular classification technique devised by Fisher (1936) with the
aim of solving a bone classification problem that he was requested to address2. This technique
is concerned with the relationship between a set of data and their corresponding labels values
(MacLachlan, 1991) and its goal is to specify this relationship in terms of a function that
ideally separates each instance of the training data according to their label. In the remainder
of the paper we will refer to discriminant analysis as FDA. In this section we briefly review
FDA for the specific case of binary classification and in such a way that lays the ground for the
introduction of logistic regression and Gaussian processes for classification. We concentrate
on discriminant analysis because it forms the basis of Altman’s Z-score, which is one of the
best well-known techniques to assess financial distress.

3.1 Problem setup

Consider a set of training data D = (X,y) =
{(

x(n), y(n)
)}N

n=1
and denote by x(n) a single

observation in a d-dimensional space and by y(n) ∈ {1, 0}, the categorical variable or label
assigned to the observation. An observation x(n) consists of the set of financial ratios recorded
at a fixed point in time for a given bank n, which was at that time either bankrupt or not,
i.e. y(n). Mathematically, the aim of discriminant analysis is to assign a new observation O?

into one of the k = 2 available classes and the discriminant will do so by finding a vector of
parameters w that will be optimal in some sense. In fact, the space Rd will be divided into
k regions by hyperplanes in Rd−1 to do the separation.

The process is best explained in a pictorial way. Figure 1 shows a dataset composed of two
classes being separated by a discriminant function D (w) perpendicular to w. Each data point
x(n) is projected over w, such that the distance between the projected means d = (µ0 − µ1) is
as wide as possible while the scatter around the projections (σ2

0 + σ2
1) is as small as possible

as well. The projection is achieved by taking the dot product f (n) = wTx(n) (∀n), thus the
quality of the solution depends on the tilt of the vector w. Observe that a classifier might
be obtained by verifying the sign of the projected points with respect to D (w), i.e. assign
every instance on D (w) ≥ 0 to class 1 and to class 0 otherwise. Posterior class probabilities
p (C1|x) and p (C0|x) = 1− p (C1|x), may also be derived by assuming the projections come
from Gaussian densities.

Under this setting, Fisher (1936) was the first to conclude that the vector w is given by
maximising the ratio of between to within-class variances,

2Some human remains discovered in a burial site in Egypt were required to be sexed, i.e. determined
whether they belonged to female or male specimens, (Fisher, 1936).
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Figure 1: Fisher discriminant analysis example. Two clusters of data being projected onto the
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quality of the discriminant depends on the separation between the projected class means µ0 and µ1
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J =
(µ1 − µ0)

2

σ2
1 + σ2

0

. (1)

Where we have used the subindex q = {0, 1} to denote instances belonging to either of the
classes. Given that

µq =
∑
n∈q

1

Nq

wTx(n)
q

and
σ2

q =
∑
n∈q

1

Nq

(
wTx(n)

q − µq

)2
,

coefficient J can be expressed in terms of w and with some straightforward manipulation we
arrive to

J (w) =
wTΣBw

wTΣww
, (2)

where the matrices
ΣB = (m1 −m0) (m1 −m0)

T

and

Σw =
∑

q∈{0,1}

Nq∑
n=1

(
x(n)

q −mq

) (
x(n)

q −mq

)T

are known as between and within-class covariance matrices, respectively. A solution to the
discriminant problem consists of taking the derivative of Equation 2 w.r.t. w and solving.
Zeroing the gradient and through some re-arrangement we get

ŵ ∝ Σ−1
w (m0 −m1) , (3)

which is the expression we were looking for.
Therefore class predictions for new observations x? are readily available by projecting the

data point over the estimated direction of discrimination ŵ and verifying the sign of the
projection, i.e.

f ? = ŵTx? + b ≥ D (ŵ) ; (4)

where b is the offset or threshold coefficient. Note that FDA does not yield a direct estimate
of class probabilities and in this sense it is a non-probabilistic method.
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4 Discriminative models for classification

We now focus our attention on probabilistic methods for classification. That is, we want
predictions on data to take directly the form of class probabilities and not of values that need a
post processing stage to be interpreted as such, as it happens with FDA. We first observe that
classification problems might be addressed in similar terms to those of standard regression,
that is by explicitly specifying a likelihood function (or cost function) that models the data
generation process of the observations one can proceed with parameter estimation through the
application of techniques such as maximum likelihood. In this section we introduce logistic
regression, which is probably one of the most popular probabilistic methods for classification.

4.1 Logistic regression

Going back to the allocation problem of Section 2, we still want to make a class assignment for
observation O and the most natural approach is to consider x and y as random variables and
work with the joint density p (x, y) that arises from them.3 Applying the rules of probability,
the joint can be factorised as p (x| y) p (y) or as p (y|x) p (x) and from these representations
stem the two different approaches for probabilistic data classification. The first approach is
usually referred to as generative because it models the data generating process in terms of the
class conditional density p (x| y), which combined with the class prior p (y) allows to obtain
the posterior

p (y|x) =
p (x| y) p (y)

p (x| y = 1) p (y = 1) + p (x| y = 0) p (y = 0)
.

The second approach is called discriminative because it focuses on modelling p (y|x) directly
and will be the one we will concentrate on in this paper. In both the generative and discrim-
inative approaches it is necessary to make modelling assumptions, for example deciding what
type of density to use for representing p (x| y) or p (y|x).

A straightforward way to obtain a discriminative classifier is to convert the output of a
regression function into the class probability being sought, for example by applying a response
function.4 That is consider a regression function f (·) whose domain is (−∞,∞) then by
‘squashing’ it into the range [0, 1] we will have obtained the desired classifier. An example is
the logistic regression model

p (y = 1|x) = g
(
wT φ (x)

)
, (5)

3We recall that x is a vector of observed features obtained through indirect means whereas y is a canonical
variable representing the class.

4The response function is the inverse of the link function used in statistics.
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whose response function is

g (z) =
1

1 + exp (−z)
. (6)

Note that (5) is a combination of a linear model, parameterised by w, a basis function φ (·)
and the logistic response function g. An alternative function is the cumulative Gaussian
g (z) =

´∞
−∞N (x| 0, 1) dx which produces what is known as a probit model.

Given a training set D = (X,y), with y(n) ∈ {1, 0}, we can use the problem setup of
Section 3 to interpret how a logistic regression works. We can think back again that the
goal is to find a vector of weights, such that the projections of data over it will be separated
maximally according to a specified criterion. However, the criterion will not be Rayleigh’s
quotient (1) anymore but rather the likelihood function (5) and therefore a new optimisation
problem will arise,

ŵ = −arg min
w

ln p (y|X,w)

= − arg min
w

N∑
n=1

{yn ln σ (an) + (1− yn) ln (1− σ (an))} ,
(7)

where an = wTx(n).
An estimate for ŵ may be obtained through numeric methods (Bishop, 2006). In contrast

with FDA, predictions are available by feeding the estimate ŵ and the test point x? into
the logistic function (6) and this time a probability of class-membership will be automatically
produced. Suppose that the basis φ (·) is the identity, the probability becomes p (y? = 1|x?) =

g
(
ŵTx?

)
.

5 Gaussian processes for regression and classification

Gaussian processes (GP’s) are a generalisation of multivariate Gaussian densities to infinite
continuous function sets (Rasmussen, 2004) and have been used for data inference tasks for
at least one hundred years; for example Thiele (1903) was one of the earliest proponents.
However modern applications of GP’s began with the work of mining engineer Krige (1966)
and later with that of Kimeldorf and Wahba (1970), O’Hagan (1978) and Wahba (1990).
The term process is used to refer to a collection of indexed random variables

[
f (1), . . . , f (N)

]
that (i) can be defined through a common probability density, in this case a Gaussian, and
(ii) that satisfies some consistency and permutation properties; see (Grimmett and Stirzaker,
2004) for a definition of a consistent process.

Gaussian processes keep close connections with ANN’s whenever the two of them are
treated from a Bayesian viewpoint (Neal, 1996). However, in contrast with ANN’s, Gaussian
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processes offer the advantage of flexible modelling without the overhead of having to adapt a
large number of parameters, something that has commonly hindered the application of ANN’s
in many problem domains. Some work of computational finance that specifically addresses
bankruptcy prediction in terms of ANN’s is (Atiya, 2001).

In this section we discuss linear regression and its complementary approach, GP regres-
sion, both from a Bayesian perspective. In fact, it can be shown that both approaches are
equivalent but that under certain circumstances it is more convenient to apply one over the
other. The ensuing discussion will enable the introduction of some different guises of GP’s
for data classification: Gaussian process classifiers, least-squares support vector machines,
among others. The Bayesian approach to linear regression is discussed in texts like (Box and
Tiao, 1973) for example, whereas GP regression in more modern ones like (Mackay, 2003,
Rasmussen and Williams, 2006).

5.1 Bayesian linear regression: the parameter space approach

The following discussion in mostly based on (Williams, 1999). Let us consider what may
be called generalised linear regression because we will be using a fixed set of basis functions
{φi (x)}m

i=1. Suppose then a set of training data D =
{(

x(n), t(n)
)}N

n=1
, an underlying function

f , which we are interested to infer and that inputs and targets are related in a linear way
through t(n) = f (n) + ε; with f (n) = wT φ

(
x(n)

)
and ε ∼ N (0, σ2

v). Then an embodiment of
the information extracted from the data will be given by the posterior distribution over the
parameters w, which is expressed in terms of Bayes’ rule as

p (w| D) =
p (D|w) p (w)

p (D)
; (8)

where p (D|w) is known as the likelihood function and p (w) as the prior. If observations are
i.i.d.5 the likelihood may very well be represented by t(n) ∼ N

(
wT φ

(
x(n)

)
, σ2

v

)
, whereas the

prior as w ∼ N (0,Σwt). Under such assumptions it is very easy to show that the posterior
will take the form

p (w| D) = N (wMAP ,Ar) ,

where the mean vector
wMAP = βA−1

r ΦT t, (9)

and the covariance matrix Ar = Σ−1
wt + βΦTΦ, with Φ being the so-called design matrix and

β = 1/σ2
v the precision. We remark that the posterior covariance Ar is an m×m matrix.

From a data modelling perspective, the ultimate purpose is not to derive the posterior
5Which is one of the tenets of this work.
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distribution but rather make predictions f ? for unobserved data x?, which in the present case
is done by evaluating

p (f ?| D) =

ˆ
p (f ?| D,w) p (w| D) ∂w

= N
(
f̄ ?, (σ?)2) .

(10)

Note that the above integral is a weighted average of conditional expectations over the pos-
terior6. Expressions for the mean and variance are given by

f̄ ? = wT
MAPφ (x?) (11)

and
σ2

f (x?) = φ (x?)T A−1
r φ (x?) , (12)

respectively. Regarding the mean result, if we consider a classification setting, it is straight-
forward to show wMAP (9) is equivalent to ŵFDA (3) by simply clamping the targets to the
label values (Bishop, 1995). It should be noted that in order to obtain the predictive variance
var t (x?) it is necessary to add σ2

v to σ2
f (x?) to account for the additional variance due to the

noise, since the two sources of variation are uncorrelated (Williams, 1999).

5.2 Gaussian processes for regression: the function space approach

In the previous section we saw how the uncertainty in a typical regression problem was
described in terms of a probability distribution over the parameters w. It is also possible
to deal directly with uncertainty with respect to the function values at the points we are
interested in and this is the function-space (or GP) view of the problem, as stated by Williams
(1999). The key point for departing from the parameter-based approach for data modelling
is to realise the projections f (n)’s can also be treated as random variables. Specifically, by
assuming a finite instantiation f =

[
f (1), . . . , f (N)

]T defined in a consistent way we will have
a random process, which will be a GP, if f is described by a multivariate Gaussian density
(Mackay, 1998).

In particular, we will assume that every f (n) depends on an input x(n) with index n,
such that f (n) = f

(
x(n)

)
. Note this definition implies that parameterising the f ’s with w is

irrelevant for the modelling process. Nevertheless, the justification of the GP assumption is
supported by the fact that placing a Gaussian prior over the parameters w induces a Gaussian
prior distribution over the set of instantiations f , provided that f is a linear function of w.

Thus assuming training data D has been observed, a posterior distribution will need to
6We have omitted dependencies on x? to keep the notation uncluttered.
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be inferred in similar terms to those of Section 5.1. Regarding the specification of a prior of
the GP type, it will be defined by a mean function m (x) and a covariance function k (x,x′).
In other words p (f) = N (0,K) with matrix K ∈ RN×N populated with entries of the form
k (xi,xj)∀i, j. If the likelihood p (D| f) is Gaussian, that is if D is composed by a set of noisy
observations t(n) = f (n) + ε, with ε ∼ N (0, σ2

v), it can be shown that application of Bayes’
rule will lead to

p (f | D) ∝ p (D| f) p (f)

= N
(
K

(
σ2

vI + K
)−1

t, σ2
v

(
σ2

vI + K
)−1

K
)
,

(13)

where vector f =
[
f

(
x(1)

)
, . . . , f

(
x(N)

)]T and t =
[
t(1), . . . , t(N)

]T , (Seeger, 2004). The pos-
terior distribution is thus influenced by the prior and this is ascertained in (13) by observing
that posterior mean and covariance depend on the matrix K, which is the prior covariance.

So far, the posterior over the training data p (f | D) has been inferred but the most impor-
tant task is to predict test points. This only requires that once we observe D we determine
the posterior predictive distribution for a point f ? = f (x?), that is outside the training set.
This is readily done by applying

p (f ?| D) =

ˆ
p (f ?| f) p (f | D) ∂f .

= N
(
k (x?)T (

K + σ2
vI

)−1
t, k (x?,x?) + k (x?)T ,

(K + σ2
vI)

−1
k (x?)

) (14)

where the vector k (x?) ∈ RN×1 is filled with scalars of the form k
(
x(n),x?

)
, for n = 1, . . . , N .

We remit the avid reader to (Williams, 1999) for a demonstration of the equivalence of the
results (10) and (14).

Given that the weight and function space view are equivalent, it is worth asking which one
is more convenient to apply. From a computational perspective, both approaches rely on a
matrix inversion, which in the weight-space approach is that of Ar, an m×m matrix (Section
5.1); whereas in the function space it is that of K+σ2

vI, an N×N matrix. In general, for many
types of regression, m � N and the weight space approach will be preferred. However for
certain types of linear prediction, m will be infinite and the only possible approach will be the
function-space view. Recall the computational complexity of inverting a matrix M ∈ R`×` is
O (`3), where ` is the number of rows (Golub and Van Loan, 1996). Further insights into the
convenience of the function space approach to regression are contained in (Williams, 1999)
and (Schölkopf and Smola, 2002).
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5.2.1 The covariance function

Most applications of GP’s assume the mean function m (x) is centred around 0, so the core
of the formalism lies in the type of covariance function being used. Therefore it is worth
analysing some of their features, for example in this work we only use isotropic functions
of the form k (x,x′) = k (r), with r = ‖x− x′‖. In isotropic covariances, the correlation
between observations is independent of their absolute position; only their difference in terms
of a norm counts. For example, by taking an Euclidean norm we ensure that points x and x′

lying close to each other will give rise to high correlation, therefore making f (x) and f (x′)

close to each other as well. An example of an isotropic covariance we use is

k (f (xi) , f (xj)) = k (xi,xj) = θ1 exp

(
−θ2

2
||xi − xj||2

)
(15)

also known as RBF or radial basis function covariance. The parameters Θk = {θ1, θ2} adjust
the scale and the width of the radial function, which in this case is a Gaussian. The inverse
of θ2 is also known as the bandwidth parameter σ.

In order to compare how prior and posterior GP’s are affected by the choice of covariance
function, Figure 2 shows samples from both of them, the former is defined as p (f) = N (0,K)

and the latter as p (f ?| D), specified in Equation 14. An RBF covariance (15) was used to take
the samples. In plot (a) the functions can take up any shape, provided that they are smooth,
whereas in plot (b), the functions must also be smooth but are pinned down by the observed
points. In both cases, the bandwidth of the RBF was adjusted to log θ2 = log σ−1 = −2.3026.

5.3 Gaussian processes for classification

We can think of GP regression as a generalisation of the more well-known Bayesian linear
one and in similar terms, GP classification can be thought of as a generalisation of logistic
regression. Recall that in Section 4 the activation of the logistic function was given by a =

wT φ (x), thus following a similar rationale to that of the previous section, a Gaussian process
may allow to non-linearise the function a by working directly over the space of functions.
Thus by considering a collection of latent variables an for n ∈ {1, N}, we can replace the
linear models wT φ

(
x(n)

)
by a Gaussian process f . Furthermore, given an observation x? we

are interested in determining its probability of class membership π (x?) = p (y = 1|x?) =

σ (f (x?)). The inference process is performed in an analogue way to the one previously
described, thus the distribution over f ? is computed as

p (f ?| D) =

ˆ
p (f ?| D, f) p (f | D) ∂f , (16)
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where p (f | D) ∝ p (D| f) p(f) is the posterior obtained through the application of Bayes’ rule.
However, in contrast to the regression case of Section 5.2, the noise model that needs to be
specified is that for classification, i.e. a Bernoulli distribution of the form

p (D| f) =
N∏

n=1

σ (fn)yn
[
1− σ (fn)(1−yn)

]
. (17)

This density is equivalent to that presented as an argument in the optimisation problem of
Equation 7, but with parameterisations of the form wT φ (x) replaced by f ’s.

The posterior (16) is used subsequently to estimate a probabilistic prediction of the class
label, that is

π? = p (y? = 1| D,x?) =

ˆ
p (y?| f ?) p (f ?| D) ∂f ?. (18)

Both integrals (16) and (18) are not analytically tractable and thus have to be computed in
an approximate way. However, whereas Equation 16 is usually computed through stochas-
tic methods, such as Markov Chain Monte Carlo or deterministic approaches like Laplace
approximation or variational inference; Equation 18 being one dimensional can be evaluated
through standard numeric techniques like quadrature. More references Gaussian processes
for classification, or GPC’s, can be found at (Williams and Barber, 1998).

5.4 Some other types of GP’s

Perhaps the most straightforward approximation method is to make a quadratic expansion
around the mode of the posterior p (f | D) and this is commonly referred as Laplace approxi-
mation. However, it has been proved by several authors (e.g. Minka, 2001) that such types of
approximation many times fail to capture the true nature of the distribution, thus producing
bad predictive results. Several alternative methods exist in the literature, with one of them
approximating the modes of the Bernoulli likelihood p (D| f) with Gaussian densities. This
method yields a classifier with comparable properties to those of FDA and, as shown by Peña
Centeno and Lawrence (2006), can produce competitive results in some problem domains. In
the subsequent we will refer to this method as Bayesian Fisher Discriminant (BFD).

Another type of GP technique is the so-called least squares support vector machine of
Suykens and Vandewalle (1999), which is formulated as an optimisation problem with equality
constraints. The motivation of the so-called LS-SVM is to find a faster and simpler way to
solve the QP -problem that involves solving standard support vector machines (Cortes and
Vapnik, 1995). The simplification consists of replacing the inequality constraints of a standard
support vector machine with equality ones. In this way the LS-SVM is less computationally
intensive to solve, at the expense of losing sparseness.
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Finally, one of the main drawbacks of applying GP regression stems from the fact that
it assumes Gaussian noise and unfortunately most problem domains do not show this char-
acteristic. Snelson et al. (2003) generalised the GP framework for regression by learning a
non-linear transformation of the outputs, so that non-Gaussian noise could still be modelled
with a GP. As he mentions, the generalisation consists of learning a GP regressor in latent
space and simultaneously a transformation or warping space for the outputs ; in this way other
types of noise are accounted for. This strategy will be termed warped Gaussian processes or
WGP’s.

These three methods (BFD, LS-SVM and WGP’s) are just a set of algorithmic tools that
have been developed by the machine learning community to solve regression and classification
problems. In Section 6 we will go back to them and test their effectiveness on the problem of
classifying a real dataset.

5.5 Adaptation of hyperparameters

In all the GP-based methods presented, it is only after a solution for the posterior predictive
distribution p (f ?| D) has been obtained that the issue of setting the hyperparameters Θk

of the covariance function can be addressed. Bayesian methodology dictates that these pa-
rameters should be set in a hierarchical way, however the conditional parameter distributions
arising from a covariance of the type in (15) are not amenable to Gibbs sampling. Thus practi-
tioners have looked for more straightforward methods for parameter estimation, for example
Williams (1999) recommends the use maximum likelihood or generalised cross-validation.
More details about maximum likelihood estimation are given in this section, while the ap-
plication of generalised cross-validation is given in (Rasmussen and Williams, 2006). In this
work, we selected hyperparameters for all the GP algorithms through maximum likelihood.

In the simplest example of all, the regression case, given some training data D = (X, t),
a noise model of the form p (D| f) = N (f , σ2

vI) and a GP prior p (f) = N (0,K), it can be
proved that the marginal likelihood is

p (D|Θk) =

ˆ
p (D| f) p (f |Θk)∂f

=
1

(2π)N/2 |K + σ2
vI|

1/2
exp

{
−1

2
tT

(
K + σ2

vI
)−1

t

}
.
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Therefore the log of p (D|Θk) may be computed analytically as

l = log p (D|Θk)

= −1

2
log

∣∣K + σ2
vI

∣∣− 1

2
tT

(
K + σ2

vI
)−1

t− N

2
log 2π.

(19)

As there is no closed form solution for the maximisation of l w.r.t. Θk, one needs to rely on
numeric methods such as conjugate gradients to find a local maximum. Indeed the gradient
of (19) will be used and is written explicitly as

∂l

∂θi

= −1

2
tT

(
K + σ2

vI
)−1

t + tT
(
K + σ2

vI
)−1 ∂K

∂θi

(
K + σ2

vI
)−1

t.

The strategy for parameter specification in the case of Gaussian process classifiers and
variants (i.e. GPC, BFD and WGP) follows the same lines as that of regression. In other
words, the idea is to maximise the marginal likelihood of the data, but now with the specific
noise model defined by each method. For example in the case of GPC’s it will be Equation
17.

5.6 Automatic relevance determination

Adapting the values of the hyperparameters is important if one wants to have good generali-
sation results and a better understanding of the data. Indeed for some families of covariance
functions there is a hyperparameter associated with each input dimension, such that each one
represents the characteristic length scale of the data7, thus by applying a parameter adapta-
tion method like maximum likelihood the relative importance of the inputs will be inferred.
For instance

k
(
xi,xj

)
= θ1 exp

(
−θ2

2

(
xi − xj

)T
Θard

(
xi − xj

))
+ θ3δij, (20)

is a function that weighs each component of Θard = diag (θ4, . . . , θ4+d−1) -with d being the
dimension of the data when the training is done. The parameter δij is the Kronecker delta,
which for a large enough value θ3, ensures that K is positive definite and therefore invertible
at all times.

This type of feature was proposed first in the context of neural networks by Mackay (1995)
and Neal (1996) and is usually referred to as automatic relevance determination or ARD. If

7As expressed by Rasmussen and Williams (2006), the characteristic length scales can be loosely interpreted
as the distance required to move along each axes in order to have uncorrelated inputs.
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the selection of prior covariance is adequate, then ARD may be a very useful method for
ranking and selecting features as it effectively orders inputs according to their importance
and eliminates those that are deemed unimportant. This feature might be very useful in the
bankruptcy prediction problem because it can be used to rank the financial ratios in order of
importance, as it is done later on.

In order to understand better ARD, Figure 3 shows samples from a covariance of the form
(20) with two dimensional inputs. Panel (a) shows a sample where both inputs x1 and x2 have
the same associated weights θ4 and θ5; thus in average the ensemble of samples will have a
roughly equal degree of variation along the axes x1 and x2. On the contrary, panel (b) shows
a sample where the value θ4 > θ5, producing an output that varies more on the direction x1

than on x2. Therefore, in both cases, by observing some data D, the fitted posterior will have
weights θ4 and θ5 that reflect their ‘real’ importance to the regression.

6 Data and Experiments

This section describes the experiments that were carried out to compare the predictive per-
formance of the proposed algorithmic approaches, with respect to discriminant analysis and
logistic regression. As previously mentioned, we used data from the Federal Deposit Insurance
Corporation (FDIC) and a brief analysis of the results follows. It should be noted that ex-
periments were performed under a limited setup and consequently results are not statistically
conclusive but nevertheless provide some evidence about the potential power of GP’s.

6.1 FDIC data

The University of Essex (UK) kindly provided a data set comprised of 280 multivariate
observations and whose main features are as follows. The sample consists of an equal number
of failed and non-failed US banks that reported their financial statements to the FDIC from
31 March 1989 to 30 September 2002. Each of the failed banks was paired with a non-failed
bank in terms of asset size, institution type and location; a standard procedure in this type
of work (Tam and Kiang, 1992); and furthermore, observations were removed in the case
of missing attributes. The asset size of the sample was between $2m and $700m and the
financial ratios utilised were obtained within a period of four quarters prior to failure. After
removing incomplete data, the final dataset comprised 234 observations, which was randomly
split into a training set consisting of 145 observations and a test one with 89. The number of
features in each observation is 11, the number of financial ratios being analysed. It is worth
recalling that the approach taken in this work considers every observation as i.i.d., regardless
that the observational period covered about thirteen years.
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Financial ratios
1. Net interest margin 7. Efficiency ratio
2. Non-interest income to earning assets 8. Non-current assets plus other real estate

owned to assets
3. Non-interest expense to earning assets 9. Cash plus US treasury and government

obligations to total assets
4. Net operating income to assets 10. Equity capital to assets
5. Return on assets 11. Core capital leverage ratio.
6. Return on equity

Table 1: Financial ratios used in the classification experiments. Data comes from the Federal deposit
insurance corporation (FDIC) and was kindly provided by the Centre for Computational Finance
and Economic Agents (CCFEA), University of Essex. Each ratio is described in Appendix A.

Due to the limited amount of data we had to rely on random splits of training and test
data in order to average our results and reduce as much as possible any variance effects. We
created 100 different pairs of training and testing sets out of the 234 available observations,
keeping the same proportion of training to testing data as the original data set. Using
random splitting of the data to reduce the variance of the estimates is not uncommon and is
justified by the work of Efron (1979) and Stone (1974) on boot-strapping and cross-validation,
respectively; (Rätsch et al., 1998) used a similar approach to ours. This setup also helps to
reduce the effects of any possible overfitting, although this is not completely guaranteed.

6.2 Experimental setup

We tested five different algorithms on the referred data: Fisher discriminant analysis (FDA),
least-squares support vector machines (LS-SVM), GP’s for classification (GPC), Warped GP’s
(WGP) and Bayesian Fisher discriminant (BFD). Every set was normalised to have zero mean
and unit standard deviation. The algorithms were thus trained 100 times and tested 100

more and because of this, we considered most convenient to report the average classification
performance over the 100 splits in terms of the areas under the ROC curves (AUC’s).

In fact AUC’s are highly convenient way to measure the performance of a classifier when-
ever the decision threshold has not been defined. This is because an ROC curve plots over
a two-dimensional space the number false positives (FP’s) and negatives (FN’s) that are ob-
tained under different classification thresholds. Recalling the function D (w) of Figure 1 and
Equation 4, the number of FP’s and FN’s will vary according to what the value of the offset
b is. Application of ROC curves and related techniques span several decades back, with some
early examples being (Egan, 1975, Bamber, 1975). In more recent years ROC’s have been
applied to study economic and finance problems, e.g. Rodriguez and Rodriguez (2006) apply
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them to predict sovereign debt rescheduling. Because the costs of wrongly classifying a bank
as bankrupt are unknown to us, ROC’s are a good way to measure the performance of the
set of proposed algorithms. Good introductory discussions about ROC curves and AUC’s are
found in (Engelmann et al., 2003, Fawcett, 2003, 2006).

6.3 Implementation and results

The FDA, logit and probit classifiers were implemented with the Matlab function classify

(Statistics toolbox, version 5.0.1). Whereas for LS-SVM, we used the LSSVMlab toolbox
of Suykens et al. (2002). The default 10-fold cross-validation parameters were used for the
training. BFD was implemented with the toolbox of Peña Centeno and Lawrence (2006).
Meanwhile, the WGP implementation was that of Snelson et al. (2003), with the parameter
I set to 5 function components. As WGP’s are designed for regression but not classification,
we clamped the targets to the label values. Finally, for GPC’s we used the code of Rasmussen
and Williams (2006). For all these methods, we generated ROC curves with the output values
each of them produced, i.e. in most cases posterior class probabilities, except for FDA and
WGP’s.

Table 2 reports the averages of the AUC’s over all the 100 testing instances of the FDIC
data. In this comparison, LS-SVM, GPC and BFD were trained with a covariance function
of the form (15). Note that FDA outperforms all the other methods, in terms of the mean
and median parameters. These results made us think the FDIC dataset could be separated
by a linear trend rather than by a non-linear function, thus instead decided to use a linear
covariance of the form k (x,x′) = xTΘardx

′, with Θard = {θ1, . . . , θd} for the reported exper-
iments of Table 3. This type of covariance is known as ARD ( Section 5.6) because it assigns
a hyperparameter θi to each dimension i of the data.

FDA Logistic Probit LS-SVM (rbf) BFD (rbf) GPC (rbf)
Mean 0.866 0.839 0.825 0.823 0.817 0.815

Median 0.877 0.841 0.838 0.818 0.816 0.815
Max 0.962 0.949 0.940 0.956 0.950 0.949
Min 0.672 0.679 0.678 0.687 0.681 0.676
STD 0.051 0.056 0.055 0.055 0.051 0.050

Table 2: Average classification results on the Federal Insurance Deposit Corporation data. We
report mean, median, maximum, minimum and standard deviation of the percentage area under the
ROC curve (AUC) over all testing instances of the data. The compared algorithms are: Fisher’s
discriminant analysis (FDA), Logistic and Probit regressions, Least-squares support vector machines
(LS-SVM) and two instances of Gaussian processes (GP’s): Bayesian Fisher’s discriminant (BFD)
and GP classifiers (GPC’s). It can be observed that FDA outperforms the rest of the algorithms.
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BayLS-SVM BFD (linard) GPC (linard)
Mean 0.839 0.832 0.869

Median 0.853 0.831 0.873
Max 0.952 0.964 0.982
Min 0.627 0.720 0.578
STD 0.061 0.048 0.051

Table 3: Average classification results on the Federal Insurance Deposit Corporation data with
algorithms that have ARD priors (Section 5.6). We report mean, median, maximum, minimum and
standard deviation of the percentage AUC over all testing instances. The compared methods are:
Bayesian least-squared support vector machine (BayLS-SVM), Bayesian Fisher’s discriminant (BFD)
and Warped Gaussian processes (WGP’s). Compare these results to those of Table 2.

In the second experiment (Table 3) we observe much better results for GPC and a moderate
improvement for the Bayesian version of LS-SVM’s (Van Gestel et al., 2002) and for BFD
(linard), if compared with the figures of Table 2. In this case the mean of GPC is slightly
higher than FDA’s, although the median is still lower.

As a final experiment we decided to prove the WGP algorithm of Snelson et al. (2003),
because in some domains it may have more expressive power than the other methods. Results
of AUC’s are shown in Table 4 below. It can be seen that WGP has a better predictive
performance than the rest of the compared models, including FDA and GPC (see Tables 2
and 3); although with a higher variance.

Mean
Median
Max
Min
STD

WGP
0.914
0.978
1.000
0.541
0.114

Table 4: Average classification results on the FDIC data with the warped Gaussian process algorithm
(WGP) of Snelson et al. (2003). The figures reported are mean, median, maximum, minimum and
standard deviation of the percentage area under the ROC curve (AUC) over all testing instances of
the data.

The reported results provide a guidance of how GP’s could be a useful tool to make
predictions in real life, nevertheless there are some issues that still need to be addressed. For
example random splitting allowed to reduce the variance effects of a small dataset like ours;
however it came at the cost of overlapping the samples, something that in strict sense makes
the computation of the standard deviation of Tables 2-4 invalid. In addition, the application
of standard statistical tests of significance is hindered because of such overlapping. As it is
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discussed in Section 8, we expect to have a more complete dataset in the future in order to
overcome these limitations. We also remark that taking into account the standard deviation
of the reported results implies that neither GPC’s nor WGP’s are substantially better than
FDA. Finally, the standard deviation of WGP’s is the highest of all (Table 4) and this tells the
algorithm is performing substantially better in some cases but substantially worse in others.

6.4 Analysis of features

This section briefly describes the findings of applying ARD priors to the FDIC dataset.
The study was performed on GPC’s, LS-SVM’s, BFD and WGP’s, due to the results of the
experiments reported in Tables 3 and 4. However only WGP’s are reported because they were
method that yielded the best classification results. Due to the random splitting of the data,
one hundred different rankings were obtained, each member of the set being the ordering
of the 11 financial ratios. Therefore it was considered most appropriate to summarise the
number of times a feature was allotted to a particular rank through histograms, with Figures
4 and 5 doing so. It is important to consider that ARD measures the degree of variation of
a feature to do the ranking and although it also assumes independence among features, this
does not necessarily means that a low rank will necessarily be irrelevant for the classification.
Descriptions of each of the financial ratios are included in Appendix A.

Figures 4 and 5 show some regularity on the first four as well as on the last three po-
sitions occupied by the features. Among the first group, features six, five, seven and four,
corresponding to return on equity (ROE), return on assets (ROA), efficiency ratio (ER) and
net operating income (NOI), are the most frequently ranked. ROE is a relevant financial
ratio to determine financial soundness because it measures the efficiency of a company to
generate profits from every dollar of stockholders’ equity. ROA is also a plausible feature
because it is frequently used to compare the performance of financial institutions, banks for
example; although it might not be such a useful feature when it comes to compare other
types of institutions, like e.g. insurance companies, which in particular have specific reserve
requirements. As mentioned in Appendix A, there is no consensus on how to compute the
ER, however a larger value of this parameter is usually taken as a sign of corporate distress
and this characteristic makes it a good candidate to predict bankruptcy. Lastly, the NOI is
generally perceived as a reliable measure of a company’s performance and therefore is another
reasonable selection.

On the opposite extreme, the group of not-so “relevant” features is given by the net interest
margin (NIM), the non-interest income (NII) and the capital ratio (CR), corresponding to
features number one, two and eleven. The low ranking of the NIM seems counter-intuitive
because it somehow measures the financial soundness of an institution. Nevertheless, it is
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generally thought that modern banks should rely less on this parameter due to the competitive
gains achieved by the financial sector during recent times. Regarding NII, this ratio does not
seem to have a direct relationship with the typical symptoms of financial distress a bank
may have; therefore further analysis is due. Finally, although CR is probably one of the
most important ratios to assess financial health, it was the one that occupied the lowest
rankings. Nevertheless, this observation might be misleading if one considers that CR is also
a candidate to occupy the sixth rank (of all the eleven) and more importantly, on the fact
that the previously mentioned feature independence assumption of ARD might not necessarily
hold for this dataset.

It would be useful to prove if the relevant features: return on equity, return on assets,
efficiency ratio and net operating income continue to be just as relevant along different periods
of time; this in relation to the claim made by Goodhard (1975) that the informative content
of economic and financial indicators is lost once they start being used to make predictions.
This is of course a shared weakness of all the presented methods in this paper: FDA, logistic
regression and the different guises GP’s; although we believe this issue could be addressed by
using methods that break the i.i.d. assumption of the data. Nevertheless, in the specific case
of FDA, it is remarkable that the estimated weights of the Z-score have remained virtually
unchanged for about four decades.

7 Credit risk in portfolios

We have presented a new family of algorithmic techniques unknown to the computational
economics community, that of Gaussian processes interpreted as a prior distribution over
functional space and how they can be applied to do bankruptcy prediction in terms of a
classification task. Some commercial products such as CreditMetricsTM are used to quantify
full credit risk, i.e. give an estimate of the losses of a portfolio through the application of
a suite of different techniques; including FDA. Indeed, the CreditMetrics framework (JP ,
1997) made us realise that GP’s are perfectly suitable for integration into such product in the
form of a binary classification module. Something similar would happen with other types of
products such as Moody’s KMVTM.
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8 Conclusions and further work

This work has presented a comprehensive review of some statistical methods for classifica-
tion and their application to the bankruptcy prediction problem. A comparison with newly
developed tools, such as various guises of Gaussian processes for classification has also been
included. Justification for trying new techniques lies on the fact that standard approaches
for estimating a classifier are based on parametric approaches. However, it was demonstrated
that by taking a parametric approach a richer and more flexible class of models was being
neglected, that of the non-parametric models to whom Gaussian processes belong.

GP’s are a generalisation of the Gaussian density to infinite dimensional function spaces
and lend themselves naturally to Bayesian inference tasks because of their simple analytic
properties and ease of use. However, these characteristics do not preclude them being applied
on a set of complex problem domains like for example separating data between classes. In
this work we used data from the Federal deposit insurance corporation to show how different
instances of GP’s yielded potentially competitive classification results with respect to well
established techniques like the Z-score of Altman (i.e. discriminant analysis) and logistic
regression; although we admit that the experimental setup was far from optimal.

An interesting by-product of the Bayesian formalism is that certain priors lead to the
ranking and effective pruning of features when inference is done, and GP’s are no exception.
This by-product is known as automatic relevance determination and is enabled whenever a
prior parameter is assigned to each dimension of the data (in our case the dimensions were
given by each of the financial ratios of the FDIC data). With the aim of understanding better
which financial ratios were more important to the classification task, some ARD covariance
functions were tried and the results showed that for warped Gaussian processes the return on
equity (ROE), return on assets (ROA), equity ratio (ER) and net operating income (NOI)
were the highest ranked. The capital ratio (CR) a widely viewed relevant ratio for financial
health assessment, was ranked in low positions.

We plan to expand the present work in several directions. First, assessment of the finan-
cial health of Mexican banking institutions with some of these GP tools would be useful as
automated bankruptcy prediction is in its early stages in this country. Second, expanding our
datasets to include more financial ratios and other types of variables would help on increasing
our understanding of the bankruptcy prediction task; in fact, we would like to prove what is
the effect of revising a financial statement at a time t + 1, when it was originally published
at t. Third by introducing a time-dependency component this type of methods could become
useful for early-warning and perhaps help overcome the limitations imposed by Goodhard’s
law. It would also be useful to analyse particular episodes of financial stress, like the still-
lived world economic crisis, and see which algorithm performs better. Finally, we would like
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to apply a better experimental design, in order to compare the algorithms on more fairer
grounds; given that people like Verikas et al. (2009) have observed that every new proposed
method is coincidentally better than all the previous ones.
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A Appendix

A brief description of the financial ratios that compose the FDIC data follows.
Ratio 1. Net interest margin (NIM) is the difference between the proceeds from borrowers

and the interest payed to their lenders.
Ratio 2. Non-interest income (NII) is the sum of the following types of income: fee-based,

trading, that coming from fiduciary activities and other non-interest associated one.
Ratio 3. Non-interest expense (NIX) comprises basically three types of expenses: per-

sonnel expense, occupancy and other operating expenses.
Ratio 4. Net operating income (NOI) is related to the company’s gross income associated

with its properties less the operating expenses.
Ratio 5. Return on assets (ROA) is an indicator of how profitable a company is relative

to its total assets. ROA is calculated as the ratio between the company’s total earnings over
the year and the company’s total assets.

Ratio 6. Return on equity (ROE) is a measure of the rate of return on the shareholder’s
equity of the common stock owners. ROE is estimated as the year’s net income (after pre-
ferred stock dividends but before common stock dividends) divided by total equity (excluding
preferred shares).

Ratio 7. Efficiency ratio (ER) is a ratio used to measure the efficiency of a company,
although not every one of them calculates it in the same way.

Ratio 8. Non current assets (NCA) are those that cannot be easily converted into cash,
e.g. real estate, machinery, long-term investments or patents.

Ratio 9. It is the ratio of cash plus US treasury and government obligations to total
assets.

Ratio 10. Equity capital (EC) is the capital raised from owners.
Ratio 11. The capital ratio (CR) also known as the leverage ratio is calculated as the

Tier 1 capital divided by the average of the total consolidated assets.
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